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Série 5a Solutions 

  Exercise 5a.1 – Torsion of a spinning ship  

The ship at A has just started to drill for oil on the ocean floor at a depth of 1525 m (Figure 5a.1). 

Knowing that the top of the 0.2 m diameter steel drill pipe (𝐺 = 77.2 GPa) rotates through two 

complete revolutions before the drill bit at B starts to operate, determine the maximum shearing 

stress caused in the pipe by torsion. 

 

 

Figure 5a.1 | Drilling ship in torsion.  

 

Solution – Exercise 5a.1 

Find the maximum shearing stress caused in the pipe by torsion 

 𝑳 = 𝟏𝟓𝟐𝟓 𝐦  

 𝑐 =
1

2
𝑑 = 0.1 m (5a.1.1) 

 𝜙 =
𝑇𝐿

𝐺𝐼𝑃
 → 𝑇 =

𝐺𝐼𝑃𝜙

𝐿
 (5a.1.2) 

 𝜏 =
𝑇𝑐

𝐼𝑃
=
𝐺𝐼𝑃𝜙

𝐿
∗ (

𝑐

𝐼𝑃
) =

𝐺𝜙𝑐

𝐿
 (5a.1.3) 

 𝜙 = 2 rev = 2 ∗ 2𝜋 = 12.566 rad (5a.1.4) 

 𝜏 =
(77.2 ∙ 109 Pa)(12.566 rad)(0.1 m)

1525 m
= 63614622 Pa ≈ 63.6 MPa (5a.1.5) 
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Exercise 5a.2 – Torque of a composite bar in torsion     

Consider the following composite bar in Figure 5a.2 (the shear moduli are indicated in 

parenthesis). The cross-section is circular. The bar is clamped at one end. A torsion angle of 2° is 

measured at the free end of the bar.  

 

Determine the torque, T, applied at the free end of the bar. 

 

 

Figure 5a.2 | Composite bar. 

 

Solution – 5a.2 

Determine the torque, T, applied at the free end of the bar 

First consider the polar moment of inertia 𝐼𝑝. It only depends on the geometry of the bar. We call d the 

diameter of the bar. 

𝐼𝑝 =
𝜋

32
𝑑4   (5a.2.1) 

Then, we calculate the separate stiffness k of the three respective portions of the bar. Calling L the 

length of the bar, it gives us for each portion: 

𝑘𝑥 = 𝐺𝑥
𝐼𝑝

𝐿𝑥
   (5a.2.2) 

The equivalent stiffness of serial portions is the indirect sum of the respective stiffness of each 

portion of the bar. Therefore: 

𝑘𝑒𝑞 = (𝑘𝑔𝑟𝑒𝑒𝑛
−1 + 𝑘𝑜𝑟𝑎𝑛𝑔𝑒

−1 + 𝑘𝑦𝑒𝑙𝑙𝑜𝑤
−1 )

−1
 (5a.2.3) 

To conclude, we obtain the torsion T with respect to the torsion angle 𝜙 thanks to the law: 

𝑇 = 𝑘𝑒𝑞 ∗ 𝜙 (5a.2.4) 

Substituting, the numerical application gives: 

𝑇 = 5.1 N · m (5a.2.5) 
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Exercise 5a.3 – Torsion along a bar 

A bar AB of solid cross section (diameter d) is loaded by a distributed torque (see Figure 5a.3). 

The intensity of the torque, the torque per unit distance, is denoted t(x) and varies linearly from a 

maximum value 𝑡𝐴 at the end A to zero at the end B. The length of the bar is L and the shear modulus 

of the material is G. 

 

a) Calculate the internal torque in the bar as a function of x, 𝑻𝒊𝒏𝒕(𝒙). 

b) Determine the point of maximum internal torque in the bar. 

c) Determine the maximum internal torque, 𝑻𝒎𝒂𝒙, and the maximum shear stress, 𝝉𝒎𝒂𝒙, in 

the bar. 

d) Determine the angle of twist, 𝝓, between the ends of the bar. 

 

 

Figure 5a.3 | Bar under torsion. 

 

Solution 5a.3 

What is given? 

Torque per unit distance in A: 𝑡𝐴  

Torque per unit distance in B: 0 

Shear modulus: 𝐺 

Length of the bar: 𝐿 

Diameter of the bar: 𝑑 

Principles 

The torque per unit distance varies linearly from point A to B. 

The shear stress distribution when the Shear modulus is not constant. 

What is asked 

Calculate the torque in the bar as a function of 𝑥 

Determine the point of maximum torque in the bar. 

Determine the maximum torque 𝑇𝑚𝑎𝑥 and the maximum shear-stress 𝜏𝑚𝑎𝑥 in the bar. 

Determine the angle of twist 𝜙 between the ends of the bar. 

Equations required 

Angle of twist: 

𝜙 = ∫(
𝑇(𝑥)

𝐺𝐼𝑝
)𝑑𝑥   (5a.3.1) 
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Second moment of inertia for circle cross-section 

𝐼𝑝 =
𝜋𝑑4

32
   (5a.3.2) 

General torsion formula: 

𝑇 = ∫ 𝜏(𝑟)𝑟𝑑𝐴
𝐴

  (5a.3.3) 

Torsion formula for circular cross-section body: 

𝑇 =
2𝜏𝑚𝑎𝑥𝐼𝑝

𝑑
  (5a.3.4) 

 

Figure 5a.3.2| Schematic showing the differential section taken to integrate the moment. 

 

Solution approach OPTION A 

We place the origin in point A and positive pointing towards B. 

 

a) Calculate the internal torque in the bar as a function of x, 𝑻𝒊𝒏𝒕(𝒙). 

If we cut a section of the beam and we take the section from 𝑥 to 𝐿 (point B), we can write: 

∫ 𝑡(𝑥′) 𝑑𝑥′
𝐿

𝑥

− 𝑇𝑖𝑛𝑡 = 0 → 𝑇𝑖𝑛𝑡(𝑥) = ∫ 𝑡(𝑥′) 𝑑𝑥′
𝐿

𝑥

= ∫ 𝑡𝑎 (1 −
𝑥′

𝐿
)𝑑𝑥′

𝐿

𝑥

 (5a.3.5) 

𝑇𝑖𝑛𝑡(𝑥) = 𝑡𝑎 (𝐿 − 𝑥 −
𝐿2 − 𝑥2

2𝐿
) =

𝑡𝑎𝐿

2
(1 −

𝑥

𝐿
)
2

 (5a.3.6) 

b) Determine the point of maximum internal torque in the bar. 

We can clearly see that 𝑇𝑖𝑛𝑡(𝑥) is always positive with a maximum value for 𝑥 = 0, which means at 

point A: 

𝑥𝑚𝑎𝑥 = 0 (5a.3.7) 

c) Determine the maximum internal torque, 𝑻𝒎𝒂𝒙, and the maximum shear stress, 𝝉𝒎𝒂𝒙, in the 

bar  

From (b), the maximum internal torque is then: 

𝑇𝑚𝑎𝑥 = 𝑇𝑖𝑛𝑡(0) =
𝐿𝑡𝑎
2
  (5a.3.8) 

The maximum shear-stress is gotten from Torque formula: 

x0 Lx
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𝑇𝑖𝑛𝑡 = 2
𝜏𝑚𝑎𝑥𝐼𝑝

𝑑
  (5a.3.9) 

This implies 

𝜏𝑚𝑎𝑥 = (
𝜋 (

𝑑
2)

3

2𝑇
)

−1

=
2𝑇𝑚𝑎𝑥

𝜋 (
𝑑
2
)
3 =

8𝐿𝑡𝑎
𝜋𝑑3

 (5a.3.10) 

d) Determine the angle of twist, 𝝓, between the ends of the bar  

Finally, to calculate the angle we use: 

𝑑𝜙 =
𝑇𝑖𝑛𝑡(𝑥)

𝐺𝐼𝑝
𝑑𝑥 → 𝜙(𝑥 = 𝐿) − 𝜙(0) = ∫

𝑇𝑖𝑛𝑡(𝑥)

𝐺𝐼𝑝
𝑑𝑥

𝐿

0

→ 

𝜙𝐵 = 𝜙(𝑥 = 𝐿) = ∫
𝑇𝑖𝑛𝑡(𝑥)

𝐺𝐼𝑝
𝑑𝑥

𝐿

0

 

(5a.3.11) 

Then: 

𝜙𝐵 = ∫
𝑡𝑎𝐿

2𝐺𝐼𝑝
(1 −

𝑥

𝐿
)
2

𝑑𝑥
𝐿

0

=
𝑡𝑎𝐿

2𝐺𝐼𝑝
[−

𝐿

3
(1 −

𝑥

𝐿
)
3

]
0

𝐿

=
𝑡𝑎
𝐺𝐼𝑝

𝐿2

6
=
16

3𝜋

𝐿2𝑡𝑎
𝐺𝑑4

 (5a.3.12) 

 

Solution approach OPTION B 

We place the origin in point A and positive pointing towards B. 

a) Calculate the internal torque in the bar as a function of x, 𝑻𝒊𝒏𝒕(𝒙). 

If we cut a section of the beam and we take the section from 𝟎 (point A) to 𝒙, we can write: 

∫ 𝑡(𝑥′) 𝑑𝑥′
𝑥

0

+ 𝑇𝑖𝑛𝑡(𝑥) − 𝑇𝐴 = 0 → 𝑇𝑖𝑛𝑡(𝑥) = 𝑇𝐴 −∫ 𝑡(𝑥′) 𝑑𝑥′
𝑥

0

 (5a.3.13) 

Where 𝑇𝐴 is the reaction torque required to keep equilibrium in the bar: 

𝑇𝐴 = ∫ 𝑡(𝑥′) 𝑑𝑥′
𝐿

0
 (5a.3.14) 

So using Eq 5a.3.13 in Eq 5a.3.14, we have: 

𝑇𝑖𝑛𝑡(𝑥) = 𝑇𝐴 −∫ 𝑡(𝑥′) 𝑑𝑥′
𝑥

0

= ∫ 𝑡(𝑥′) 𝑑𝑥′
𝐿

0

−∫ 𝑡(𝑥′) 𝑑𝑥′
𝑥

0

 

= ∫ 𝑡(𝑥′) 𝑑𝑥′
𝐿

𝑥

= ∫ 𝑡𝑎 (1 −
𝑥′

𝐿
)𝑑𝑥′

𝐿

𝑥

 

(5a.3.15) 

𝑇𝑖𝑛𝑡(𝑥) = 𝑡𝑎 (𝐿 − 𝑥 −
𝐿2 − 𝑥2

2𝐿
) =

𝑡𝑎𝐿

2
(1 −

𝑥

𝐿
)
2

 (5a.3.16) 

At this point, we can see that Eq. 5a.3.16 is the same as Eq. 5a.3.6, so the rest of solution for this 

case, when we take the section on the left of the cut, reduces to the one described in option A. 
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Exercise 5a.4 – Torsion with varied shapes 

Part 5a.4.1: Cylindrical bar in torsion  

Consider the following shallow cylinder represented in Figure 5a.4.1. It is made of copper (𝐺𝐶𝑢 =
45 GPa). We clamp it and we apply a torque (𝑇0 = 5 kN ∙ m) at the free end. Dimensions are given on 
Figure 5a.4.1 (𝑟1 = 10 cm, 𝑟2 = 5 cm, 𝐿 = 5 m). 

 
a) Draw the free body diagram, write the equilibrium equation, and give the expression of 

the internal Torque as a function of 𝑻𝟎.  
b) Express the polar moment of inertia 𝑰𝒑 as a function of 𝒓𝟏, 𝒓𝟐, 𝐚𝐧𝐝 𝑳.  

c) Determine the minimum shear stress at the section represented in Figure 5a.4.1(a) 
(dashed red)?  

d) Determine the torsion angle at the free end, 𝝓𝟏, as a function of 𝒓𝟏, 𝒓𝟐, 𝑳, 𝑮𝑪𝒖, and 𝑻𝟎.  

 

 

Figure 5a.4.1 |System Description 

 

Solution – 5a.4.1 

a) Draw the free body diagram, write the equilibrium equation, and give the expression of the 
internal Torque as a function of 𝑻𝟎.  

We can draw the free body diagram as: 
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With 

−𝑇𝑅 + 𝑇0 = 0 (5a.4.1) 

We cut the bar between O and A and we call M the point on the cut at the position of the axis. Tint is 

the internal torque at this section. 

 

The equilibrium equations give us :  

𝑇0𝑒𝑥⃗⃗  ⃗ − 𝑇𝑖𝑛𝑡𝑒𝑥⃗⃗  ⃗ = 0⃗        or      𝑇0 − 𝑇𝑖𝑛𝑡 = 0 (5a.4.2) 

𝑇0 = 𝑇𝑖𝑛𝑡  (5a.4.3) 

b) Express the polar moment of inertia 𝑰𝒑 as a function of 𝒓𝟏, 𝒓𝟐, 𝐚𝐧𝐝 𝑳.  

From the formula of the polar moment of inertia, we get the following. Inferior limit of integration 

is the cylinder internal radius. 

𝐼𝑝 = ∫𝑟2dA
𝐴

= 2𝜋∫ 𝑟3dρ 
𝑟1

𝑟2

= [
𝜋𝑟4

2
]
𝑟2>𝑟1

= [
𝜋(𝑟1

4 − 𝑟2
4)

2
] (5a.4.4) 

c) Determine the minimum shear stress at the section represented in Figure 5a.4.1(a) (dashed 
red)?  

We are in the case of a thick-walled cylinder. Thin wall approximations do not work here. We 

compute the minimal stress at radius 𝑟2, where the stress is minimal. From there, we get: 

𝜏𝑚𝑖𝑛 =
𝑇0𝑟𝑚𝑖𝑛

𝐼𝑝
= 2

𝑇0𝑟2

𝜋(𝑟1
4 − 𝑟2

4)
=  1.7 MPa (5a.4.5) 

d) Determine the torsion angle at the free end, 𝛟𝟏, as a function of 𝒓𝟏, 𝒓𝟐, 𝑳, 𝑮𝑪𝒖, and 𝑻𝟎.  

We simply compute the formula of the torsion angle and integrate along the bar. The cross section 

being uniform, the integral is linear: 

 ϕ1 = ∫
𝑇0

𝐼𝑝𝐺𝐶𝑢
dx

𝐿

0

=
𝑇0

𝐼𝑝𝐺𝐶𝑢
∫ dx
𝐿

0

=
𝑇0𝐿

𝐼𝑝𝐺𝐶𝑢
=

2𝑇0

𝜋𝐺(𝑟1
4 − 𝑟2

4)
𝐿 (5a.4.6) 
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Part 5a.4.2: Conical bar in torsion  

  Consider the full conical cylinder of Figure 5a.4.2. It is made of aluminum (𝐺𝐴𝑙 = 26 GPa). We 
clamp it and we apply a torque (𝑇0 = 5 kN ∙ m) at the free end. Dimensions are given on Figure 5a.4.2 
(𝑟1 = 10 cm, 𝑟3 = 5 cm, 𝐿/2 = 2.5 m). 

 
a) Express the radius of the cylinder as a function of 𝒓𝟏, 𝒓𝟑, 𝑳, and 𝒙 (𝒙 is the varying 

parameter along the 𝒙-axis considering O’ as the origin).  
b) Express the polar moment of inertia, 𝑰𝒑, as a function of 𝒓𝟏, 𝒓𝟑, 𝑳, and 𝒙.  

c) Determine the torsion angle 𝝓𝟐, where 𝝓𝟐 is the torsion angle at the free-end of the 
aluminum bar as a function of 𝒓𝟏, 𝒓𝟑, 𝑳, 𝑮𝑨𝒍, and 𝑻𝟎.  

 

 

Figure 5a.4.2 |System Description 

 

Solution – 5a.4.2 

a) Express the radius of the cylinder as a function of 𝒓𝟏, 𝒓𝟑, 𝑳, and 𝒙 (𝒙 is the varying parameter 

along the 𝒙-axis considering O’ as the origin). 

If we consider the origin at O’, then finding the radius is equivalent to finding the coefficients of a 

linear function in the (x,y) Cartesian coordinate system. 

𝑟(𝑥) = 𝑟1 + 2
𝑟3 − 𝑟1
𝐿

𝑥 (5a.4.7) 

b) Express the polar moment of inertia, 𝑰𝒑, as a function of 𝒓𝟏, 𝒓𝟑, 𝑳, and 𝒙.  

We compute the polar moment of inertia. Integration is done considering only a circular cross-

section. Computation of the r(x) formula is done only after integration. 

𝐼𝑝 = ∫𝑟2dA
𝐴

= 2𝜋∫ 𝜌3dρ 
𝑟

0

= [
𝜋𝜌4

2
]
0>𝑟

=
𝜋𝑟4

2
=
𝜋

2
(𝑟1 + 2

𝑟3 − 𝑟1
𝐿

𝑥)
4

 

 

(5a.4.8) 

c) Determine the torsion angle 𝝓𝟐, where 𝝓𝟐 is the torsion angle at the free-end of the 
aluminum bar as a function of 𝒓𝟏, 𝒓𝟑, 𝑳, 𝑮𝑨𝒍, and 𝑻𝟎.  

The question consists in calculating the integral along the bar.  

𝜙2 = ∫
𝑇0

𝐼𝑝(𝑥)𝐺𝐴𝑙
𝑑𝑥

𝐿
2

0

= ∫
𝑇0

𝜋
2
(𝑟1 + 2

𝑟3 − 𝑟1
𝐿

𝑥)
4

𝐺𝐴𝑙

dx

𝐿
2

0

 (5a.4.9) 
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=
2𝑇0
𝜋𝐺𝐴𝑙

[
−1

6(𝑟3 − 𝑟1)
𝐿

(𝑟1 + 2
𝑟3 − 𝑟1
𝐿

𝑥)
3]

0>
𝐿
2

=
𝑇0𝐿

3𝜋𝐺𝐴𝑙(𝑟1 − 𝑟3)
(
1

𝑟3
3 −

1

𝑟1
3) 
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Part 5a.4.3: Complex bar in torsion 

We clamp the two bars of part 5a.4.1 and part 5a.4.2 together as shown in Figure 5a.4.3. A torque, 
𝑇0, is applied at the free end of the bar. 

 
a) Determine the torsion angle, 𝝓, at the free end of the bar, as a function of 𝝓𝟏 and 𝝓𝟐.  
b) Calculate the numerical value of 𝝓. 

 

 

Figure 5a.4.3 | Complex bar with applied torque 

 

Solution –  5a.4.3 

a) Determine the torsion angle, 𝝓, at the free end of the bar, as a function of 𝝓𝟏 and 𝝓𝟐.  
We use the superposition principle:  

𝜙 = 𝜙1 + 𝜙2 (5a.4.10) 

b) Calculate the numerical value of 𝝓. 

𝜙 =  3.8 mrad +  14.3 mrad =  18.1 mrad =  1.03° (5a.4.11) 
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Exercise 5a.5 – Torsion in a composite cone 

Consider the circular bar in Figure 5a.5 (dimensions: 𝐷 = 2 cm; 𝐿 = 96 cm). The Young’s moduli 

and Poisson’s ratios of the bar materials are 𝐸𝐴 = 35 GPa and 𝜈𝐴 = 0.25 in the left portion and 𝐸𝐵 =

72.8 GPa and 𝜈𝐵 = 0.3 in the right portion. We apply a torque 𝑇0 = 10π  N · m. 

 

a) Calculate the numerical value of the shear modulus of both materials, 𝑮𝑨 and 𝑮𝑩. 

b) Determine the polar moment of inertia, 𝑰𝑷, at position 𝒙 of the bar as a function of 𝑫, 𝒙, 

and 𝑳. 

c) Calculate the numerical value of the maximum shear stress in the entire bar. 

d) Calculate the numerical value of the torsion angle, 𝝓, of the free end of the bar. 

 

 

Figure 5a.5 | Schematic of the composite bar in torsion. 

 

Solution – 5a.5 

a) Calculate the numerical value of the shear modulus of both materials, 𝑮𝑨 and 𝑮𝑩. 

𝐺𝐴 =
𝐸𝐴

2(1 + 𝜈𝐴)
=

35 GPa

2(1 + 0.25)
= 14 GPa (5a.5.1) 

𝐺𝐵 =
𝐸𝐵

2(1 + 𝜈𝐵)
=

72.8 GPa

2(1 + 0.3)
= 28 GPa (5a.5.2) 

b) Determine the polar moment of inertia (𝑰𝑷) at position 𝒙 of the bar as a function of 𝑫, 𝒙, and 

𝑳.  

𝑑(𝑥) = 4𝐷 −
𝐷

𝐿
𝑥    OR    𝑟(𝑥) = 2𝐷 −

𝐷

2𝐿
𝑥   (5a.5.3) 

𝐼𝑃(𝑥) = 𝜋 ·
𝑑4

32
=

𝜋

32
𝐷4 (4 −

𝑥

𝐿
)
4

  OR   𝐼𝑃(𝑥) = 𝜋 ·
𝑟4

2
=

𝜋

2
𝐷4 (2 −

𝑥

2𝐿
)
4

 (5a.5.4) 

c) Calculate the numerical value of the maximum shear stress in the entire bar.  

𝜏(𝑥, 𝑟) =
𝑇0𝑟

𝐼𝑃(𝑥)
 (5a.5.5) 

𝟐𝑳 𝑳
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𝜏𝑀𝑎𝑥(𝑥) =
16𝑇0

𝜋𝐷3 (4 −
𝑥
𝐿
)
3 → 

𝜏𝑀𝑎𝑥 =
16𝑇0
𝜋𝐷3

=
160𝜋

𝜋 · 8 · 10−6
= 20 MPa 

(5a.5.6) 

d) Calculate the numerical value of the torsion angle of the free end of the bar.  

𝜙(3𝐿) = ∫
𝑇0

𝐺(𝑥)𝐼𝑃(𝑥)
𝑑𝑥

3𝐿

0

 (5a.5.7) 

= 𝜙(0 > 2𝐿) + 𝜙(2𝐿 > 3𝐿) (5a.5.8) 

= ∫
𝑇0

𝐺𝐴𝐼𝑃(𝑥)
𝑑𝑥

2𝐿

0

+∫
𝑇0

𝐺𝐵𝐼𝑃(𝑥)
𝑑𝑥

3𝐿

2𝐿

 

=
𝑇0
𝐺𝐴

∫
𝑑𝑥

𝐼𝑃(𝑥)

2𝐿

0

+
𝑇0
𝐺𝐵

∫
𝑑𝑥

𝐼𝑃(𝑥)

3𝐿

2𝐿

 

(5a.5.9) 

=
32𝑇0

𝜋𝐺𝐴𝐷
4
[
𝐿

3
(

1

4 −
𝑥

𝐿

)]

0

2𝐿

+
32𝑇0

𝜋𝐺𝐵𝐷
4
[
𝐿

3
(

1

4 −
𝑥

𝐿

)]

2𝐿

3𝐿

 (5a.5.10) 

=
𝑇0
𝐺𝐴

∗
32

𝜋𝐷4
(

𝐿

3(4 − 2)3
−

𝐿

3(4)3
) +

𝑇0
𝐺𝐵

∗
32

𝜋𝐷4
(

𝐿

3(4 − 3)3
−

𝐿

3(4 − 2)3
) 

=
𝑇0
𝐺𝐴

∗
32

𝜋𝐷4
𝐿 (

7

192
) +

𝑇0
𝐺𝐵

∗
32

𝜋𝐷4
𝐿 (

56

192
) =

32𝑇0
𝜋𝐷4

∗
𝐿

192
(
7

14
+
56

28
) · 10−9 

(5a.5.11) 

=
32𝑇0
𝜋𝐷4

∗
𝐿

192
2.5 · 10−9 (5a.5.12) 

𝜙 =
32𝜋10

𝜋16 · 10−8
∗
96 · 10−2

192
2.5 · 10−9 = 25 mrad  

(NB: 5 mrad + 20 mrad) 

(5a.5.13) 

 

 


